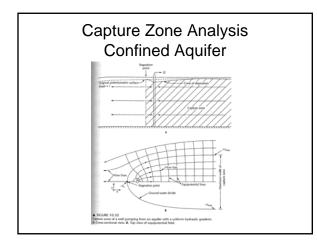


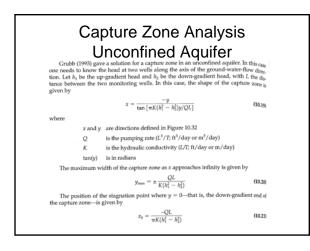
Capture Zone Analysis Confined Aquifer

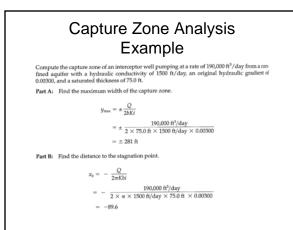
The equation to describe the edge of the capture zone for a confined aquifer when steady-state conditions have been reached is (Todd 1980; Grubb 1993):

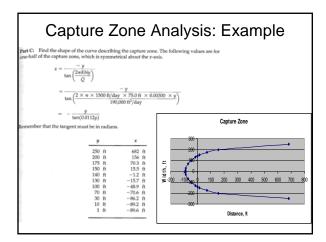
 $x = \frac{-y}{\tan(2\pi K biy/Q)}$

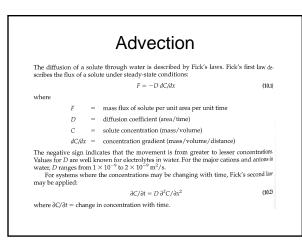

(10.16)

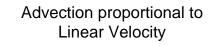
where x and y are directions defined on Figure 10.32

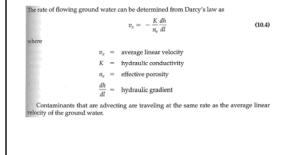

- Q is the pumping rate (L^3/T ; ft³/day or m³/day)
- K is the hydraulic conductivity (L/T; ft/day or m/day)
- *b* is the initial saturated thickness of the aquifer (*L*; ft or m)
- *i* is the hydraulic gradient of the flow field in the absence of the pumping well (dimensionless)

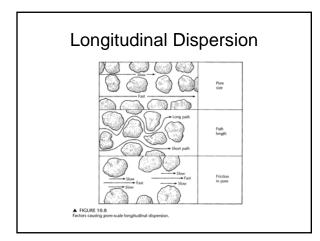

tan(y) is in radians

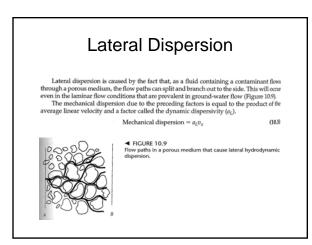

Capture Zone Analysis Confined Aquifer

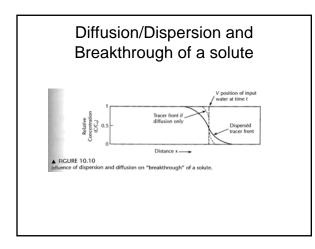




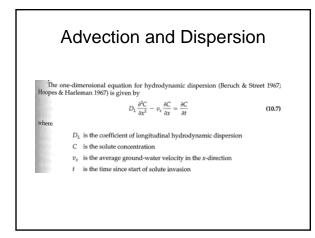


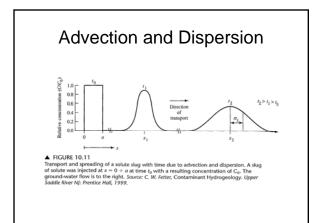


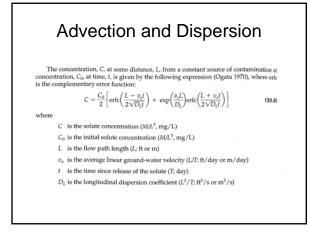


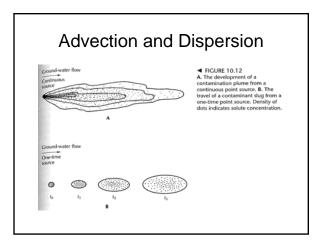


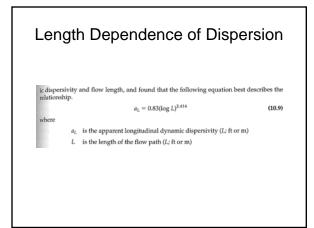
Hydrodynamic Dispersion

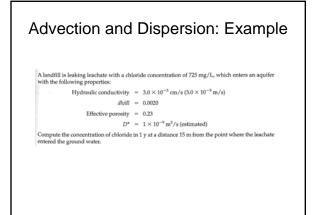

The processes of molecular diffusion and mechanical dispersivity cannot be separated in flowing ground water. Instead, a factor termed the coefficient of hydrodynamic dispesion, D_{L_i} is introduced. It takes into account both the mechanical mixing and diffusion. For one-dimensional flow it is represented by the following equation: $D_L = a_L v_L + D^*$ (B#)

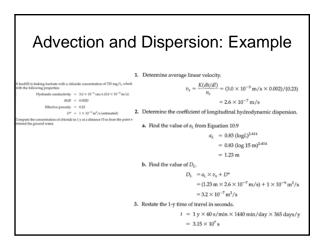

where


- $D_L = -$ the longitudinal coefficient of hydrodynamic dispersion
- a_L = the dynamic dispersivity
- $v_x =$ the average linear ground-water velocity
- $D^* =$ the effective molecular diffusion coefficient

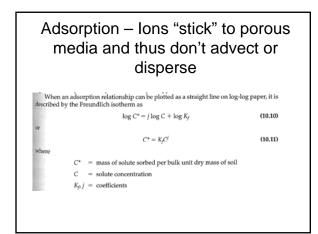


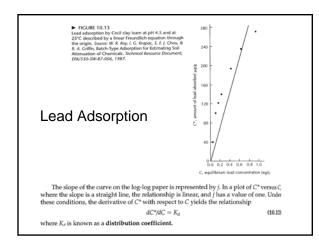


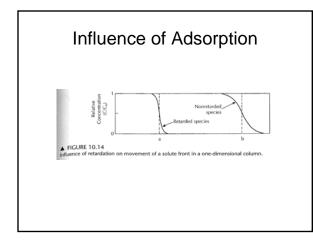


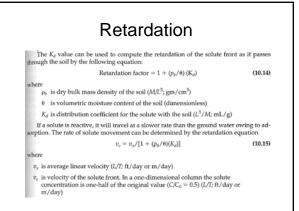


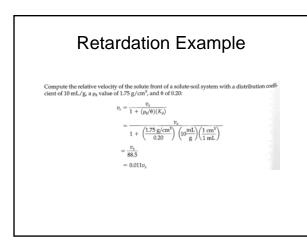


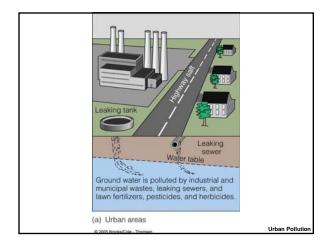


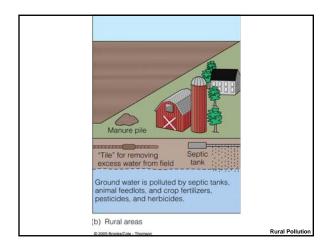


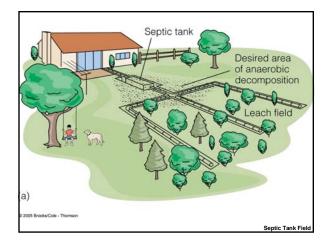


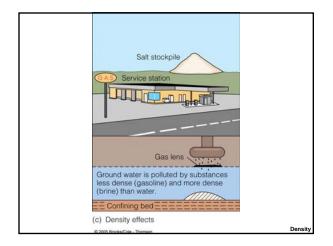


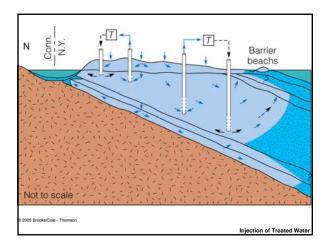






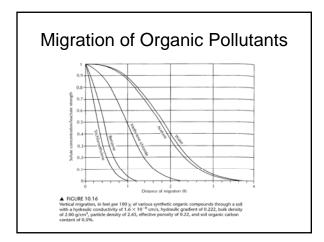






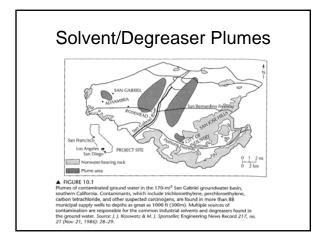
	Organic Pollutants						
Table 10.3 Solubility, Kocr a	nd mobility class	for common orga	inic pollutants				
Compound	Solubility (mg/L)	K _{ec} (mL/g)	Mobility Class				
1, 4-Dioxane	miscible	1	very high				
4-hydroxy-4-methyl-2-pentanone	miscible	1	very high				
acetone	miscible	1	very high				
tetrahydrofuran	miscible	1	very high				
N.N'-dimethylformamide		1	very high				
N,N'-dimethylacetamide		2	very high				
2-methyl-2-butanol	140000.	6	very high				
2-butanol	125000.	6	very high				
ethyl ether	84300.	8	very high				
cyclohexanol	56700.	10	very high				
3-methylbutanoic acid	42000.	12	very high				
benzyl alcohol	40000.	12	very high				
aniline	34000.	13	very high				
2-hexanone (butylmethylketone)	35000.	14	very high				
2-hydroxy-triethylamine		15	very high				
2-methylphenol (o-cresol)	31000.	15	very high				
2-methyl-2-propanol		16	very high				

Organic Pollutants							
Organie i oliatanto							
	Table 10.3 conti	nued					
Compound	Solubility (mg/L)	K _{oc} (mL/g)	Mobility Class				
4-methylphenol (p-cresol)	24000.	17	very hig				
pentanoic acid	24000.	17	very hig				
cyclohexanone	23000.	18	very hig				
4-methyl-2-pentanone	19000.	20	very hig				
2, 4-dimethyl phenol	17000.	21	very hig				
4-methyl-2-pentanol	17000.	21	very hig				
methylene chloride	13200.	25	very hig				
isophorone	12000.	26	very hig				
phenol	82000.	27	very hig				
2-chlorophenol	11087.	27	very hig				
hexanoic acid	11000.	28	very hig				
chloroform	7840	34	very hig				
1,2-dichloroethane	8450.	36	very hig				
1,2-trans-dichloroethene	6300.	39	very hig				
chloroethane	5700.	42	very hig				
5-methyl-2-hexanone	5400.	43	very hig				
chloromethane	5380.	43	very hig				
1,1-dichloroethane	5100.	45	very hig				
1.1.2-trichloroethane	4420.	49	very hig				

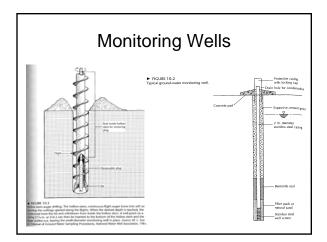

Organi	Organic Pollutants				
1,2-dichloropropane	3570.	51	high		
benzoic acid	2900.	64	high		
octanoic acid	2500.	70	high		
heptanoic acid	2410.	71	high		
1,1,2,2-tetrachloroethane	3230.	88	high		
benzene	1780.	97	high		
diethyl phthalate	1000.	123	high		
2-nonanol	1000.	123	high		
bromodichloromethane	900.	131	high		
3-methylbenzoic acid	850.	136	high		
trichloroethene	1100.	152	moderate		
1,1,1-trichloroethane	700.	155	moderate		
di-n-butyl phthalate	400.	217	moderate		
1,1-dichloroethene	400.	217	moderate		
carbon tetrachloride	800.	232	moderate		
2-butanone (methylethylketone)	353.	235	moderate		
4-methylbenzoic acid	340.	240	moderate		
toluene	500.	242	moderate		
tetrachloroethylene	200.	303	moderate		
chlorobenzene	448.	318	moderate		
1,2-dichlorobenzene	148.	343	moderate		
o-xylene	170.	363	moderate		
1,2,2-trifluoro-1,1,2-trichloroethane		372	moderate		
styrene	162	380	moderate		
1,3-dichlorobenzene	118.	463	moderate		
fluorotrichloromethane	110.	476	moderate		
4,6-dinitro-2-methylphenol		477	moderate		

Organic Pollutants				
N-nitrosodiphenylamine	35.1	982	low	
3.5-dimethylphenol		1038	low	
BHC-delta	31.5	1052	low	
2,6-dimethylphenol		1060	low	
1,2,4-trichlorobenzene	30.	1080	low	
naphthalene	31.7	1300	low	
4-ethylphenol		1986	low	
dibenzofuran	10.	2140	slight	
hexachloroethane	8.	2450	slight	
acenaphthene	7.4	2580	slight	
tri-N-propylamine		2610	slight	
BHC-alpha	8.5	2627	slight	
BHC-beta	2.7	3619	slight	
hexachlorobenzene	0.035	3910	slight	
hexachlorobutadiene	3.2	4330	slight	
di-n-octyl phthalate	3.	4510	slight	
butyl benzyl phthalate	2.9	4606	slight	
fluorene	1.98	5835	slight	
2-methylnaphthalene	25.4	8500	slight	
bis(2-ethylhexyl)phthalate	0.6	12200	slight	
toxaphene	0.4	15700	slight	
heptachlor epoxide	0.35	17087	slight	
endosulfan II	0.28	19623	slight	
luoranthene	0.275	19800	slight	

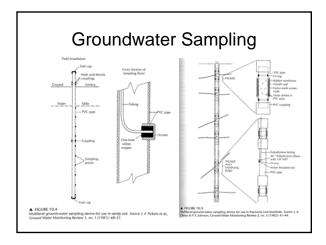
Organic Pollutants				
1,2-diphenylhydrazene (as azobenzene)	0.252	20947	immobile	
endosulfan sulfate	0.22	22788	immobile	
phenanthrene	1.29	23000	immobile	
dieldrin	0.188	25120	immobile	
anthracene	0.073	26000	immobile	
BHC-gamma	0.15	28900	immobile	
lecanoic acid		39610	immobile	
thlordane	0.056	53200	immobile	
pyrene	0.135	63400	immobile	
CB-1254	0.042	63914	immobile	
heptachlor	0.03	78400	immobile	
endrin	0.024	90000	immobile	
enzo(a)anthracene	0.014	125719	immobile	
ldrin	0.013	132000	immobile	
4'-DDE	0.01	155000	immobile	
4'-DDT	0.0017	238000	immobile	
4,4'-DDD	0.005	238000	immobile	
benzo(a)pyrene	0.0038	282185	immobile	
CB-1260	0.0027	349462	immobile	
hrysene	0.022	420108	immobile	
enzo(b)fluoranthene		1148497	immobile	
enzo(k)fluoranthene		2020971	immobile	

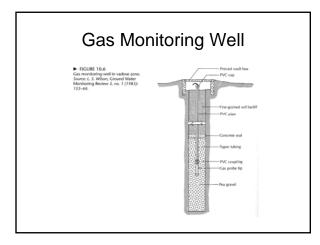


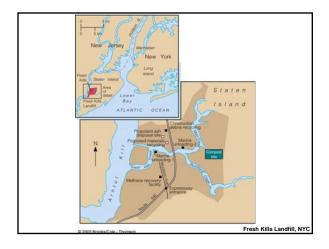
Metals	Nonmetals	Organics	Extractable Organic Compounds	Volatile Organic Compounds	Organisms
aleminum ansenie burium cadenium cheomium oopper iron lead lähium manganese mercury molybdenum nökel uranium zäher uranium zähe	acida antimoria bolion (yaniske fisaoride fisaoride nitioske national rafisma safitate rafisma safitate rafisma safitate rafisma safitate rafisma safitate saforopere	aktin RCD RCD Acterproto deterproto deterproto generation physics and action physics and	tri-e-propylanize 5 - and/or 4 sentbyl 4 - architol benotic acid 1 - acids benotic acid 1 - acids acid 2 - bearson 2 - bearsone 4 - methyl-2 - perstance 2 - bearsone 4 - methyl-2 - bearson 2 - bearsone 4 - methyl-2 - bearson 4 - methyl-2 - bearson	betanne 1.1. dicklassente 1.1. dicklassente 1.1. dicklassente disklassente disklassente taus 1.2. dicklassente taus 1.2. dicklassente ta	Gardai Izabia Shipinga p. Yugan y. Yumaha Wanaka Wa

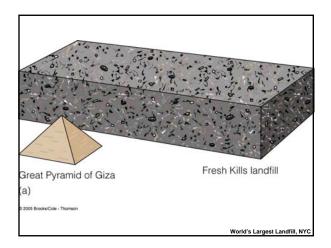


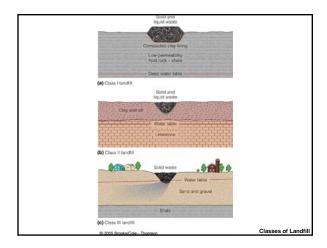
Munici	lunicipal Solid Water Landfill Leacates				
		Nisco	nsin		
			Typical Range		
	Parameter	Overall Range*	(range of site medians)*	Number of Analyses	
	TDS	564-50430	2180-25873	172	
	Specific conductance	480-72500	2840-15485	1167	
	Total susp. solids BOD	2-140900 ND-195000	28-2835 101-29200	2700	
	COD	ND-195000 6.6-97500	101-29000	200	
	TOC	ND-30500	427-5890	52	
	pdd	5-6.9	5.4-7.2	1900	
	Solid athalianty (CACO)	ND-15050	960-6845	328	
	Hardness (CaCO ₃)	52-225000	1050-9980	404	
	Chloride Calcium	2-11375	180-2651 200-2100	305	
	Calcium	200-2500	12-1630	192	
	Total Kieldahl nitrogen	2-3320	47-1470	156	
	lion	ND-1500	2.1-1400	456	
	Potassium.	ND-2800	ND-1375	29	
	Magnesium	120-780	120-780	9	
	Ammonia-nitrogen	ND-1200	26-557	263	
	Sulfate Abarninam	ND-1850 ND-65	8.4-500 NIP 65	154	
	Zinc	ND-731	ND-54	158	
	Manganese	ND-31.1	0.03-25.9	67	
	Total phosphorus	ND-234	0.3-117	454	
	Boron	0.87-13	1.19-12.3	15	
	Barlum	ND-12.5	ND-5	73	
	Nickel	ND-7.5	ND-1.65	133	
	Nitrate-nitrogen Lead	ND-250 ND-14.2	ND-1.4 ND-1.11	88 142	
	Chromium	ND-162 ND-54	ND-10	138	
	Antimory	ND-319	ND-056	76	
	Copper	ND-4.06	ND-0.32	138	
	Thallium	ND-0.78	ND-0.31	70	
	Cyanide	ND-6	ND-0.25	86	
	Arsenic Molybdenum	ND-70.2 0/1-143	ND-0.225 0.034-0.193	112	
	Tin	001-1.43 ND-0.16	0.004-0.199	3	
	Nitrite-nitropen	ND-1.46	ND-0.11	20	
	Selenium.	ND-1.85	ND-0.09	121	
	Cadmium	ND-0.4	ND-0.07	158	
	Silver	ND-1.96	ND-0.024	106	
	Boryllium	ND-0.36	ND-0.008	76	
	Mercury	ND-0/H	ND-0.001	133	

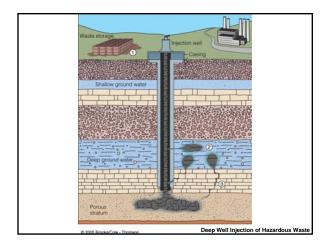


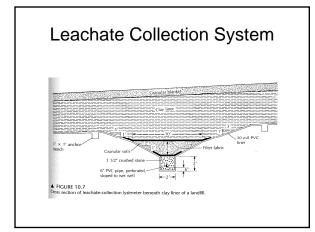


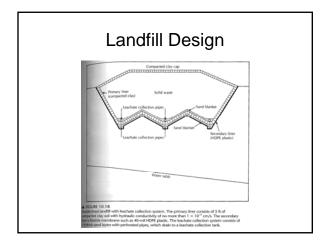


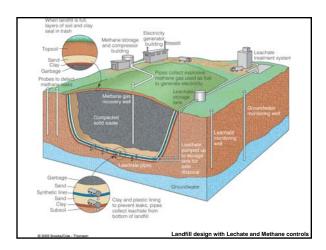


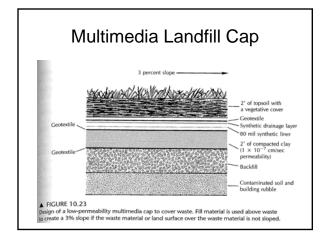


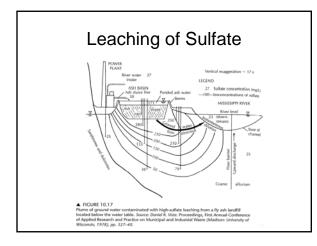


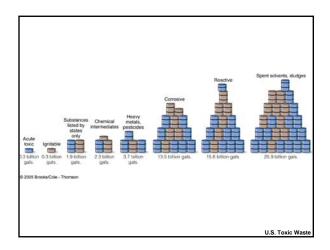

*TABLE	15.1 Classifications of Disposal Sites and Waste Groups
	Geology of Disposal Sites
Clear I	No possibility of discharge of inachate to usable waters. Inundation and washour, must not occur. The underlying lining material, whether soil or synthetic, must be essentially impermeable; that is, it must have a permeability less than 0.3 cm/year. All waste groups may be received (Figure 15.5, part a).
Cless II	Site overfies or is adjacent to usable ground water. Artificial barriers may be used for both vertical and lateral leachate migration. Geologic formation or artificially constructed lines or barriers should have a permeability of less than 30 cm/year. Groups 2 and 3 waster may be accepted (Figure 15.5, part b).
Class III	Inadequate protection of underground- or surface-water quality. Includes filling of areas that contain water, such as marshy areas, pits, and quarries. Only inert Group 3 wastes can be accepted (Figure 15.5, part c).
	Constituents of Waste Groups
Group 1	 Consists of but not limited to toxic substances that could impair water quality. Examples are saline fluids, toxic chemicals, toilet wastes, brines from food processing, pesticides, chemical fertilizers, toxic compounds of arsenic, and chemical-warfare agents.
Group 2	Household and commercial garbage, tin cans, metals, paper products, glass, cloth, wood, yard clippings, small dead animals, and hair, hide, and bones.
Greup 3	Non-water-soluble, nondecomposable inert solids such as concrete, asphalt, plasterboard, rubber products, steel-mill slag, clay products, glass, and asbestos shingles.

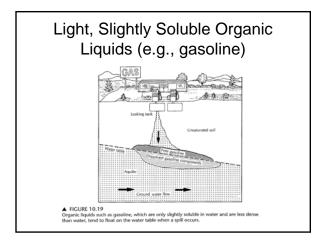












Solubility ^b					
Compound	Specific Gravity ^a	Milligrams compound/liter wate (@ °C Temperature)			
Acetone	0.79	Infinite			
Benzene	0.88	1780 (20)			
Carbon tetrachloride	1.59	800 (20), 1160 (25)			
Chloroform	1.48	8000 (20), 9300 (25)			
Methylene chloride	1.33	20,000 (20), 16,700 (25)			
Chlorobenzene	1.11	500 (20), 488 (30)			
Ethyl benzene	0.87	140 (15), 152 (20)			
Hexachlorobenzene	1.60	0.11 (24)			
Ethylene chloride	1.24	9200 (0), 8690 (20)			
1, 1, 1-trichloroethane	1.34	4400 (20)			
1, 1, 2-trichloroethane	1.44	4500 (20)			
Trichloroethylene	1.46	1100 (25)			
Tetrachloroethylene	1.62	150 (25)			
Phenol	1.07	82,000 (15)			
2-Chlorophenol	1.26	28,500 (20)			
Pentachlorophenol	1.98	5 (0), 14 (20)			
Toluene	0.87	470 (16), 515 (20)			
Methyl ethyl ketone	0.81	353 (10)			
Naphthalene	1.03	32 (25)			
Vinyl chloride	0.91	1.1 (25)			

